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BCRP/ABCG2 in the Placenta: Expression, Function and Regulation

Qingcheng Mao1,2

Received December 17, 2007; accepted January 8, 2008; published online January 18, 2008

Abstract. Knowledge concerning transport of maternally administered drugs across the placental barrier
is essential for determining potential toxicity of drugs to the fetus and the value of drug therapy during
pregnancy. An important determinant for fetal drug exposure is the expression of efflux transporters in
the placenta. Among human tissues, the ATP-binding cassette efflux transporter BCRP (gene symbol
ABCG2) is most abundantly expressed in the apical membrane of placental syncytiotrophoblasts.
Although the precise physiological role of BCRP in the placenta is still unclear, existing data strongly
suggest that BCRP plays an important role in protecting the fetus against the potential toxicity of drugs,
xenobiotics, and metabolites by expelling them across the placental barrier. In this review, we summarize
the current knowledge with respect to the expression, function, and polymorphisms of BCRP, as well as
transcriptional and posttranscriptional regulation of the transporter in the placenta. Finally, clinical
significance of BCRP in the placenta for drug therapy in pregnant women is discussed.
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INTRODUCTION

Pregnant women often need to take medication to treat
diseases including viral, fungal, or bacteria infections, epilep-
sy, hypertension, or pregnancy-induced conditions such as
depression, nausea and gestational diabetes. In a study in
which 578 pregnant women were interviewed, researchers
found that 95.8% of the participants took at least one
prescription drug, 92.6% of the participants self-medicated
with over-the-counter medications, and 45.2% of the partic-
ipants used herbal medications during pregnancy (1). More
recently, a multi-center study also showed that 64% of all
pregnant women in the USA used at least one prescription
drug other than a vitamin or mineral supplement in the
270 days before delivery (2). Moreover, a large proportion of
pregnant women (5–10%) received FDA category D or X
drugs which are potentially teratogens, and the general
pattern of drug use has been with higher use in early
pregnancy compared to later trimesters (2,3). Thus, a major
concern arising from the use of medication by pregnant
women is the transfer of drugs across the placental barrier,
leading to potential toxicity to the developing fetus, particu-
larly at early gestational stages.

Most maternally administered drugs can cross the
placental barrier by passive diffusion to some extent which
is primarily determined by the physicochemical properties
(e.g., molecular weight, pKa, and lipid solubility) and/or the

pharmacokinetic characteristics (e.g., elimination half-life in
the mother, protein binding in fetal and maternal compart-
ments, and metabolism in the placenta and fetus) of the drugs
(4–6). In recent years, the importance of ATP-binding
cassette (ABC) efflux transporters expressed in the apical
membrane of placental syncytiotrophoblasts in moderating
drug penetration across the placental barrier and thereby
limiting fetal drug exposure has been appreciated (7,8). The
first ABC transporter that has been recognized to play a
significant role in protecting the fetus is P-glycoprotein (P-
gp). For example, Lankas et al. (9) showed that the absence of
P-gp expression in the placenta of pregnant mice significantly
increased the toxicity of the pesticide avermectin to the
developing fetus with enhanced placental penetration of the
pesticide. The two other major ABC efflux transporters that
are expressed in the apical membrane of placental syncytio-
trophoblasts and may also be important in protecting the
fetus are the multidrug resistance protein 2 (MRP2) and the
breast cancer resistance protein (BCRP; Fig. 1). Expression
of ABC transporters in the placenta in general has been
reviewed recently (8,10,11).

This review focuses on BCRP. We will first give a brief
overview of BCRP followed by the current knowledge
regarding expression and function of the transporter in the
placenta. Substantial variation in BCRP expression has been
observed in human placenta (12), suggesting that consider-
able variability could exist in fetal exposure to drugs, xeno-
biotics, and metabolites. Such variable expression and/or
activity may be caused by genetic polymorphisms of BCRP
(12). BCRP expression in the placenta is possibly tightly
controlled during pregnancy by pregnancy-related steroid
hormones, growth factors, and cytokines. We therefore will
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also review the current understanding concerning single-
nucleotide polymorphisms of BCRP in human placenta and
the molecular mechanisms by which BCRP expression in the
placenta is regulated. Finally, clinical significance of BCRP
expression in the placenta will be discussed.

Breast Cancer Resistance Protein (BCRP)

BCRP is an approximately 75 kDa plasma membrane
transporter belonging to the subfamily G of the large human
ABC transporter superfamily. BCRP is the second member of
the subfamily G and hence designated as ABCG2. BCRP was
first cloned in 1998 from a breast cancer cell line, MCF-7/
AdrVp which is highly resistant to doxorubicin with cross-
resistance to daunorubicin and mitoxantrone (13). Shortly
after that, an almost identical transporter termed MXR was
discovered in a highly mitoxantrone-resistant human colon
carcinoma cell line S1-M1–80 (14). Allikmets et al. (15)
screened expressed sequence tag database and isolated
ABCP cDNA that is essentially identical to the cDNA of
BCRP or MXR. ABCP (ABC transporter in placenta) was so
named to reflect its high level expression in human placenta.
BCRP, MXR and ABCP are essentially the same protein with
only a few amino acid differences. It has now been well
established that BCRP is an ATP-dependent efflux transport-
er that is able to expel chemotherapeutic agents out of the
cell, and is therefore considered as one of the most important
ABC transporters that confer multidrug resistance in cancer
cells (16,17).

Functional studies in the last decade indicate that BCRP
can transport a broad spectrum of substrates, ranging from
chemotherapeutic agents to organic anions. Substrate speci-
ficity of BCRP has been extensively reviewed (18,19). Typical
chemotherapeutic agents that are transported by BCRP
include mitoxantrone, camptothecin derivates (e.g., topotecan
and irinotecan), and anthracyclines (e.g., daunorubicin and
doxorubicin; 16). Many of these anti-cancer drugs are also P-
gp substrates. Nucleoside analogs such as zidovudine (AZT)
and lamivudine (3TC) are also BCRP substrates (20,21).
BCRP substrates also include, among others, prazosin (22),
the tyrosine kinase inhibitors CI1033 and STI571 (23,24),
dipyridamole (25), and phytoestrogens (26). Of particular
interest is that various drugs commonly administered to
pregnant women, including nitrofurantoin (27), cimetidine
(28) and glyburide (29), are BCRP substrates. Thus, a large of
number of drugs from various therapeutic categories, includ-
ing anti-cancer drugs, antibiotics, anti-hypertensive, and anti-
diabetics, have been identified as BCRP substrates. BCRP
can also transport a wide variety of organic anions, conjugat-
ed or unconjugated, including estrone-3-sulfate, 17β-estradiol
17-(β-D-glucuronide), dehydroepiandrosterone (30), and
methotrexate (31). Collectively, BCRP displays an extremely
broad spectrum of substrate specificity that is overlapping,
but distinct from that of P-gp or MRP2. In general, P-gp
preferentially transports uncharged hydrophobic compounds
and some weakly basic substances (32); however, BCRP can
transport both hydrophobic and hydrophilic substrates which
are conjugated or unconjugated (16,18,32). MRP2 mainly
transports organic anions, and glutathione, sulfate, and
glucuronate conjugates (33). While BCRP can transport both
sulfate and glucuronide conjugates, sulfate conjugates seem to

be the preferred substrates (34). However, MRP2 seems to
preferentially transport glutathione conjugates (with lower
Km values; 33), and BCRP has so far not been shown to
transport glutathione conjugates.

A variety of BCRP inhibitors have already been
identified, including, among others, GF120918 (a second-
generation P-gp inhibitor which belongs to the acridone
carboxamide derivatives; 35), fumitremorgin C (FTC; a
natural product secreted from the fungi Aspergillus fumiga-
tus) and its analogs (36), tyrosine kinase inhibitors (e.g.,
CI1033 and STI571; 37,38), anti-HIV protease inhibitors (e.g.,
nelfinavir and ritonavir; 39), calcium channel blockers (25),
immunosuppressants (40), and a variety of food dietary
flavonoids (41). More detailed information on BCRP inhib-
itors can be found in recent reviews (18,42). Identification of
BCRP substrates and inhibitors provides the opportunity to
pharmacologically modulate BCRP function as a tool of drug
therapy (e.g., circumvention of drug resistance in cancers)
and allows understanding the molecular mechanisms under-
lying potential BCRP-mediated drug–drug interactions.

Tissues Expression and Membrane Localization of BCRP

BCRP expression in human tissues has been extensively
investigated. Doyle et al. (13) assessed BCRP mRNA
expression using commercially prepared human multi-tissue
Northern blots. The highest level of BCRP mRNA was seen
in placenta, which was approximately 100 times greater than
that in liver, small intestine, colon, brain, liver, ovary, testis, or
prostate. BCRP mRNA levels were also high in liver and
small intestine. There was little or no BCRP mRNA
expression in heart, lung, skeletal muscle, kidney, pancreas,
spleen, thymus, or peripheral-blood leukocytes. BCRP was
named ABCP because of its extremely high level expression
in the placenta compared with other tissues (15). Subsequent-
ly, the immunohistochemical study by Maliepaard et al. with
two different BCRP-specific monoclonal antibodies revealed
that BCRP protein was most strongly expressed in the colon
epithelium, the placental syncytiotrophoblasts, the small
intestinal epithelium, liver canaliculi, and blood vessel
capillaries in the brain (43). BCRP protein levels in other
tissues were low. In general, the pattern of BCRP protein
expression in human tissues determined by immunohisto-
chemistry matches well with that of BCRP mRNA expression
obtained in Northern blotting studies. BCRP expression in
normal tissues may play a protective role for these tissues.
The tissue distribution pattern of Bcrp1, the murine homolog
of human BCRP, highly resembles that of human protein with
substantial Bcrp1 mRNA and protein expression in the
placenta, small intestine, and liver, except that there is little
expression of BCRP in human kidney whereas Bcrp1
expression in mouse kidney is substantial (44–46). BCRP
gene has also been cloned in rat (46,47), rhesus macaque (48),
and porcine (49). The tissue distribution pattern of BCRP in
rhesus macaque and porcine has yet to be determined.

With respect to membrane localization of BCRP in
human tissues, Maliepaard et al. (43) showed that BCRP is
primarily expressed in the apical membrane of the placental
syncytiotrophoblasts, in the apical membrane of the epithe-
lium in small intestine and colon, and in the liver canalicular
membrane. BCRP is also highly expressed at the luminal
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surface of the microvessel endothelium of human brain (50).
The substantial expression of BCRP in organs important for
drug disposition (e.g., small intestine, liver, blood-brain
barrier, and placenta) implies that BCRP could play a
significant role in the absorption, distribution, and elimination
of drugs that are BCRP substrates. Indeed, the importance of
BCRP in drug disposition has now been demonstrated in
numerous studies (51–54). The pharmacological significance
of BCRP in drug transport has been extensively reviewed
elsewhere (18,19,27,35,55–57). The apical side localization of
human BCRP in placental syncytiotrophoblasts has been
confirmed in various studies (58–61). We have shown that
mouse Bcrp1 is also localized in the apical membrane of
placental syncytiotrophoblasts of the pregnant mouse (45).
Similarly, rat Bcrp has been shown to be strongly expressed in
the rat placental labyrinth zone in which maternal blood is
separated from fetal blood vessels by trophoblasts (62). A
schematic representation of BCRP localization in the placen-
ta is shown in Fig. 1.

Gestational Change of BCRP Expression in the Placenta

Recent studies indicate that BCRP expression in the
placenta changes with gestational age.Meyer zu Schwabedissen
et al. demonstrated that the BCRP mRNA levels in human
placenta at preterm (28±1 weeks, 15 placenta) were approx-
imately two times greater (p<0.05) than that at term (39±
2 weeks, 29 placenta), and BCRP protein expression showed
the same pattern as that of BCRP mRNA (59). These authors
did not measure BCRP expression in human placenta

earlier than 28 weeks. However, another study with smaller
sample size (six to eight placenta at each gestational age) did
not show significant change in BCRP mRNA levels in human
placenta with advancing gestation, but BCRP protein levels
slightly increased towards the end of gestation (61). Mathias
et al. also reported that the BCRP protein and mRNA levels
in human placenta did not significantly change with gesta-
tional ages, but again these data were obtained with a limited
sample size (four to six placenta at each gestational age) with
substantial variations (63). The reason for this apparent
discrepancy remains to be investigated. The data from rodent
studies seem to be consistent with those reported by Meyer
zu Schwabedissen et al. (59). In rat, Yasuda et al. found that
rat Bcrp protein levels in the placenta at gestation day 14
were significantly higher than those at gestation day 20 (term
in rat is approximately 21 days; 64). Likewise, our laboratory
also demonstrated that Bcrp1 expression (protein and
mRNA) in the placenta of pregnant mice peaked at gestation
day 15 (term in mice is approximately 20–21 days; 45).
Kalabis et al. reported that Bcrp1 mRNA levels in the
placenta of pregnant mice decreased progressively from
gestation day 9.5 toward term; however, Bcrp1 protein
expression did not change significantly during gestation (65).
Overall, BCRP/Bcrp1 expression in the placenta may be
under tight control during pregnancy. Taken together, the
substantial expression in the apical membrane of placental
syncytiotrophoblasts indicate that BCRP/Bcrp1 may play an
important role in protecting the fetus by expelling drugs,
xenobiotics, and metabolites across the placental barrier,
particularly at mid-gestational ages. We note that, while

Fig. 1. A schematic representation of localization of the major ABC efflux transporters, P-gp, BCRP, and MRP2, in the apical membrane of
the placental syncytiotrophoblast. P-gp P-glycoprotein (ABCB1), BCRP breast cancer resistance protein (ABCG2), MRP2 multidrug
resistance protein 2 (ABCC2)
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BCRP expression in the placenta peaks at mid-gestation as
discussed above, P-gp (63,66) and MRP2 (67) expression in
the placenta progressively decreases and increases, respec-
tively, with gestational age towards term. It is possible that
the differential placental expression of BCRP, P-gp, and
MRP2 over the course of pregnancy provides a compensatory
mechanism for protection of the fetus at different gestational
stages.

Transport Function of BCRP in the Placenta

The activity of BCRP/Bcrp1 in placental transport has
been analyzed in studies using in vitro cell culture, ex vivo
perfused placenta, and in vivo animal models. The data
published thus far are summarized in Table I. Kolwankar et
al. (68) reported BCRP-mediated mitoxantrone transport in
microvillus membrane vesicles isolated from human term
placenta. Most recently, Gedeon et al. (69) showed that
uptake of glyburide into the inside-out membrane vesicles
isolated from human term placenta was significantly increased
by the BCRP inhibitor novobiocin, but not by the P-gp
inhibitor verapamil and the MRP inhibitor indomethacin,
suggesting that glyburide was transported by BCRP. Trans-
port activity of BCRP has also been illustrated in vitro with
the “model” human placental BeWo cell line or primary
trophoblasts in various studies using mitoxantrone or Hoechst
33342 as a BCRP substrate (70–72). Staud et al. (62)
examined the transport activity of Bcrp1 in perfused rat
placenta using cimetidine as a Bcrp1 substrate. Rat Bcrp1 was
shown to significantly limit the maternal-to-fetal transport of
cimetidine. When fetal perfusate was recirculated, rat Bcrp1
could actively transport cimetidine from the fetal to the
maternal compartment against a concentration gradient. The
first study demonstrating in vivo transport activity of Bcrp1 in
the placenta was performed in P-gp-knockout pregnant mice
(51). Using P-gp-deficient pregnant mice, Jonker et al. (51)
demonstrated that co-administration of the Bcrp1 inhibitor
GF120918 increased the fetal concentration of topotecan (a
BCRP/Bcrp1 substrate) twofold at 30 min after drug admin-
istration in the pregnant mice, compared with that in the
pregnant vehicle-treated control animals. In vivo studies
demonstrating transport activity of placental Bcrp1 using
Bcrp1-knockout mice have been reported for topotecan and
phytoestrogens (26,44). These studies demonstrated in-
creased fetal/maternal plasma concentration ratios in Bcrp1-
knockout pregnant mice compared with those in wild-type
pregnant mice, at only one time point after drug administra-
tion as a measure of fetal drug exposure. Most recently, our
laboratory, for the first time, reported detailed transplacental
pharmacokinetics of a model BCRP/Bcrp1 substrate, nitro-
furantoin, in the pregnant mouse, and examined the role of
Bcrp1 in determining fetal exposure of nitrofurantoin (73).
We measured the maternal plasma and fetal AUCs of
nitrofurantoin in pregnant mice after drug administration by
retro-orbital injection. After 60 min of drug administration,
nitrofurantoin in the systemic circulation was nearly com-
pletely eliminated in both the wild-type and Bcrp1-knockout
pregnant mice. While the maternal plasma AUC of nitro-
furantoin was only slightly increased in Bcrp1-knockout
pregnant mice compared with that in wild-type pregnant
mice, the fetal AUC in Bcrp1-knockout pregnant mice was

approximately 5 times greater than that in wild-type pregnant
mice. These results clearly suggest that Bcrp1 significantly
limits fetal distribution of nitrofurantoin in the pregnant
mouse. Such in vivo transplacental pharmacokinetic studies in
animal models are particularly valuable, as similar studies of
direct placental drug transport in humans are not feasible due
to ethical reasons.

We also performed similar in vivo transplacental phar-
macokinetic studies for glyburide, an antidiabetic drug
commonly used to treat gestational diabetes. We found that
while the maternal plasma AUCs of glyburide in the wild-
type and Bcrp1-knockout pregnant mice were comparable,
the fetal AUC of glyburide in the Bcrp1-knockout pregnant
mice was two times greater than that in the wild-type
pregnant mice (74). Recently, Kraemer et al. (75) performed
ex vivo perfusion studies of human placenta to quantify
placental transfer of glyburide. These authors have excluded
albumin from the perfusion buffer so that net transfer of
glyburide could be measured without the effect of high
protein binding. Substantial fetal-to-maternal transfer of
glyburide against a concentration gradient was observed.
Furthermore, the transfer of glyburide across the placental
barrier could not be inhibited the addition of verapamil, a P-
gp inhibitor. These data suggest that glyburide was possibly
effluxed by a transporter other than P-gp or P-gp is not a
major player in the glyburide transport by human term
placenta. We have previously shown that verapamil is not
an effective inhibitor for BCRP (25). Thus, BCRP is likely a
major player in the efflux of glyburide by human term
placenta. The results of our animal studies provided further
evidence to support this conclusion. However, since glyburide
is also a P-gp substrate (76) and verapamil used in the study
of Kraemer et al. is a relatively weak P-gp inhibitor, the role
of P-gp in placental transport of glyburide cannot be
excluded. Nevertheless, since it has been shown that the
BCRP mRNA level was approximately ten times greater than
that of P-gp in human term placenta (70), it is reasonable to
assume that BCRP likely plays a much greater role than P-gp
in transport of glyburide by human term placenta. High
plasma protein binding may also contribute to the minimal
fetal distribution of glyburide in vivo (77). Taken together,
the in vitro transport, ex vivo perfusion, and in vivo
transplacental pharmacokinetic studies all point to the unique
role of BCRP/Bcrp1 in limiting fetal exposure of glyburide.

Physiological Role of BCRP in the Placenta

Although it is now quite clear that BCRP plays an
important role in protecting the fetus against potential
toxicity of drugs and xenobiotics, few studies have been done
to demonstrate the physiological role of BCRP in the
placenta. Placenta is the organ involved in the synthesis of
steroid hormones such as progesterone and estrogens during
pregnancy. Dehydroepiandrosterone (DHEA) and its sulfate
conjugate (DHEAS) are important precursor molecules for
placental estrogen synthesis. Estrone-3-sulfate (E3S) is a
metabolite of estrogens but can function as a pool of inactive
estrogens. Both DHEAS and E3S are effective substrates of
BCRP (30,60); therefore, BCRP in human placenta is likely
involved in the elimination of these endogenous sulfate
conjugates from the fetal compartment into the maternal
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circulation. Thus, it has been suggested that BCRP may
regulate placental estrogen synthesis through modulating
intracellular DHEAS and E3S concentrations (60).

Recently, Evseenko et al. (58,78) showed that inhibition
of BCRP activity by a BCRP-specific inhibitor Ko143
increased cytokine-induced apoptosis in primary trophoblasts
and BeWo cells. Decreasing BCRP expression in BeWo cells
by transfection of BCRP siRNA significantly increased the
cell sensitivity to cytokine- and exogenous C6 and C8
ceramide-induced apoptosis. Silencing of BCRP expression
also increased intracellular ceramide levels after cytokine
exposure, but did not affect cellular protoporphyrin IX
concentrations or sensitivity to activators of intrinsic apopto-
sis pathway. These authors further demonstrated that BCRP
expression in placenta from pregnancies with idiopathic fetal
growth restriction (IUGR) was significantly lower than that
from normal pregnancies. Based on these data, the authors
proposed that BCRP may play a hitherto unrecognized role
in the placenta, protecting trophoblasts against apoptosis
induced by cytokines or other activators via modulation of
ceramide signaling, and BCRP is likely a survival factor in
differentiation of placental trophoblasts. These data support
the hypothesis that decreased BCRP expression in the
placenta from IUGR pregnancies may result in placental
function deficit, thus contributing to fetal growth restriction.
Further studies are needed to confirm this hypothesis.

Genetic Polymorphisms of BCRP in the Placenta

Several laboratories have reported naturally occurring
variants of BCRP. Notably, the single nucleotide polymor-
phisms (SNPs) G34A and C421A, resulting in alterations of
BCRP protein at position 12 (V12M) and 141 (Q141K),
respectively, occur at a relatively high frequency in most
ethnic populations. For example, in the Japanese population,
39–50% are hetetozygous and 7% are homozygous for
C421A (79, 80). In the Chinese population, 60% are
hetetozygous for C421A (80). Other BCRP SNPs including
A616C and A1768T are much less frequent with allele
frequencies less than 1% (79–82). In addition, a polymor-
phism that results in a substitution of stop codon for Gln at
position 126 has been identified (79). BCRP SNPs may result
in variable expression of the transporter in tissues. Recently,
Kobayashi et al. (12) examined the relationship between
BCRP gene polymorphisms and protein expression in human
placenta of the Japanese population. They showed that G34A
and C421A occur at allele frequencies of 18% and 35%,
respectively. Also, C376T which results in a stop codon at
position 126 occurs at <1% frequency. This is consistent with
the data reported by others (79,80). Kobayashi et al. also
identified various SNPs with low allele frequencies (<1%),
such as G1322A and T1465C, in placenta of the Japanese
population, which were not reported by others. The study by
Imai et al. (79) showed that the C421A polymorphism was
associated with significantly lower expression and activity of
the Q141K variant compared with the wild-type protein.
Similarly, in placenta of the Japanese population, Kobayashi
et al. illustrated that the mean BCRP protein level of the
A421 homozygotes was approximately 50% of that of the
C421 allele, and heterozygotes displayed an intermediate
level. They further showed that this difference is likely

caused by posttranscriptional regulation rather than changes
in mRNA expression because polymorphism-dependent
changes in BCRP mRNA expression were not observed
(12). These data suggest that the C421A polymorphism could
potentially decrease BCRP expression and activity in human
placenta, leading to increased fetal drug exposure.

In vitro Regulation of BCRP Expression in Placental Cells

Pregnancy is one of the major physiologically stressful
events, during which hormone concentrations are drastically
changed. Therefore, it is not surprising that the expression of
drug transporters and metabolic enzymes in organs important
for drug disposition may be altered during pregnancy. As
mentioned above, several laboratories have demonstrated
that the expression of human BCRP as well as mouse and rat
Bcrp1 in the placenta is gestational age-dependent (45,59,64).
Likewise, Bcrp1 protein levels in the liver and kidney of
pregnant mice reached a maximum at gestation day 15, but
there was no significant change in Bcrp1 protein levels in
small intestine over gestational age (45). At present, no data
are available regarding the effect of pregnancy on BCRP/
Bcrp1 expression in the liver, kidney, and small intestine of
species other than mice.

The molecular mechanisms by which pregnancy affects
BCRP expression in the placenta and other organs is yet
unknown. The promoter of human BCRP gene has been
cloned (83), permitting studies on regulation of BCRP gene
expression at the transcriptional level. The BCRP promoter
lacks a TATA-box and contains several putative Sp sites
which are downstream from a putative CpG island. Whether
Sp nuclear transcriptional factors are involved in the control
of constitutive expression of the BCRP gene is not known.
Recently, other nuclear receptors such as peroxisome pro-
liferators-activated receptor gamma (PPARγ; 84), hypoxia-
inducible factor 1 (HIF-1; 85), and aryl hydrocarbon receptor
(AhR; 86,87) have been shown to be involved in the
induction of BCRP gene transcription. Factors other than
nuclear receptors have also been reported to affect BCRP
expression. For example, To et al. (88) illustrated that
aberrant methylation in the predicted CpG island in the
BCRP promoter region suppresses transcription of the BCRP
gene. Alternative promoter usage has also been demonstrat-
ed to cause differential expression of BCRP mRNA in drug-
resistant cells and normal tissues (89,90). Whether the above
mentioned regulation pathways possibly play a role in the
control of BCRP expression in the placenta is yet to be
determined.

The concentrations of pregnancy-related hormones such
as progesterone and 17β-estradiol rise significantly through-
out pregnancy (91). Therefore, it is reasonable to hypothesize
that BCRP expression in the placenta may be increased in
association with increased concentrations of these hormones.
We have recently shown that progesterone receptor isoforms,
PRA and PRB, differentially regulate expression of BCRP in
the model human placental cell line, BeWo (92). We found
that progesterone up-regulated BCRP expression in BeWo
cells through PRB, but not PRA. In addition, PRA repressed
the PRB activity. We also identified a progesterone response
element (PRE) in the BCRP promoter region (92). Evseenko
et al. reported that progesterone treatment did not affect
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BCRP expression in primary trophoblasts (93). It is possible
that the trophoblasts secret a high level of endogenous
progesterone by which the progesterone receptors are
saturated; therefore, further addition of exogenous proges-
terone could not have an effect. We observed this phenom-
enon in BeWo cells (92). Progesterone is highly produced by
the placenta after weeks 10 in pregnancy (94). Also,
progesterone receptor expression has been demonstrated in
human placenta (95). Thus, placenta is very likely a target
tissue for the action of progesterone. It is therefore reason-
able to hypothesize that progesterone may induce BCRP
expression in the placenta through PRB and augment the
protective role of the transporter during pregnancy. We will
test this hypothesis in future study. Kalabis et al. examined the
effect of progesterone on Bcrp1 expression in the placenta of
pregnant mice, and found that the daily progesterone
treatment starting at gestation day 14.5 until gestation
day 18.5 significantly increased maternal progesterone con-
centrations, but did not affect Bcrp1 mRNA and protein
expression in the placenta at gestation day 18.5 as compared
with vehicle-treatment controls (65). It has been shown that
the maternal plasma concentrations of endogenous proges-
terone at gestation day 14.5 were approximately 60 ng/ml
(~190 nM; 96) and the progesterone concentrations in
placenta tissues could be even greater. The progesterone
receptors have possibly already been saturated at such high
progesterone concentrations. Moreover, we have shown that
the progesterone receptor expression in the placenta of
pregnant mice is significantly decreased from gestation
day 10 towards term (term in mice is approximately 20–
21 days; 45). Therefore, an induction of placental Bcrp1
expression by additional exogenous progesterone from ges-
tation day 14.5 to gestation day 18.5 may not occur.
Collectively, the possibility that progesterone regulates
BCRP/Bcrp1 expression in the placenta in vivo over the
course of pregnancy warrants further investigation.

The effect of 17β-estradiol on BCRP expression is
conflicting. It has been shown that 17β-estradiol induces
BCRP expression in various cancer cell lines including the
BeWo cells via estrogen receptor α (ERα), and an estrogen
response element (ERE) in the BCRP promoter region has
also been identified (97,98). In contrast, Imai et al. reported
that 17β-estradiol decreased BCRP expression in ERα-
positive cancer cell lines through posttranscriptional regula-
tion (e.g., decreased protein biosynthesis and maturation;
99). As to why the posttranscriptional down-regulation of
BCRP by 17β-estradiol requires the presence of a nuclear
receptor ERα is not known. We also found that 17β-
estradiol down-regulated BCRP expression in BeWo cells
(72). The reason for this apparent discrepancy remains to be
determined. We note that the PRE in the BCRP promoter
region is exactly the same as the ERE published by Ee et al.
(97). That progesterone and estrogen receptors share the
same or similar response elements is possible, as earlier
studies suggest that the regulatory elements for different
steroids, including progesterone, 17β-estradiol, and gluco-
corticoids, are either similar or at least share structural
features (100). Thus, progesterone and 17β-estradiol could
make an impact on each other in regulation of BCRP, when
the two hormones are combined. The real situation could be
very complex, as 17β-estradiol by itself can induce PRB

expression (72,101) and down-regulate BCRP expression
(99), and on the other hand, PRA can repress the estrogen
receptor activity (102). In BeWo cells, we showed that the
17β-estradiol treatment alone down-regulated BCRP ex-
pression (72), presumably due to posttranscriptional regula-
tion as demonstrated by Imai et al. (99); however, the
combined treatment of BeWo cells with 17β-estradiol and
progesterone significantly increased BCRP expression com-
pared with progesterone treatment alone (72). We have
hypothesized that this combined effect is likely due to
induction by 17β-estradiol of PRB in BeWo cells which
then induces BCRP expression through progesterone (72).
The results that progesterone can up-regulate BCRP ex-
pression support this hypothesis. We noted that the com-
bined effect of 17β-estradiol and progesterone on BCRP
expression in BeWo cells was dependent on concentrations
of the two hormones used. For example, the inductive effect
of progesterone on BCRP expression was inhibited when
progesterone was combined with a high concentration of
17β-estradiol (72). This is likely due to the effect of down-
regulation on BCRP expression by 17β-estradiol at a
high concentration which overrides the inductive effect of
progesterone.

We also observed that estriol, human placental lactogen,
and human prolactin could also induce BCRP expression in
BeWo cells at physiological concentrations (103). Further
studies are needed to elucidate the molecular mechanisms by
which estriol, placental lactogen, and prolactin up-regulate
BCRP expression. Testosterone by itself did not affect BCRP
expression at physiological concentrations. However, testos-
terone together with 17β-estradiol increased BCRP expres-
sion, and this induction was abolished by ERα antagonist
ICI-182,780 or the testosterone receptor antagonist flutamide
or knock-down of ERα (103). Further analysis revealed that
17β-estradiol increased testosterone receptor mRNA approx-
imately 5.9-fold, suggesting that testosterone in combination
with 17β-estradiol increases BCRP expression, possibly
through 17β-estradiol-mediated up-regulation of the testos-
terone receptor.

BCRP expression in the placenta can also be influenced
by cytokines and growth factors. Evseenko et al. showed that
treatment of primary term trophoblasts with tumor necrosis
factor-α (TNF-α) and interleukin-1β (IL-1β) significantly
decreased BCRP protein and mRNA expression, but IL-6
had no significant effect (93). On the other hand, epidermal
growth factor (EGF) and insulin-like growth factor II
significantly increased BCRP protein and mRNA expression
(59,93). There is evidence that the concentrations of cyto-
kines such as TNF-α and IL-1β are elevated in some of
obstetric disorders such as preeclampsia and gestational
diabetes. Thus, the fetal protective function of BCRP against
xenobiotics may be decreased in such obstetric disorders.
BCRP expression in primary trophoblasts was shown to be
increased with trophoblast differentiation (71), which is
consistent with the role of EGF that promotes trophoblast
differentiation (104). Maternal inflammation could also alter
BCRP expression in the placenta. For example, down-
regulation of Bcrp1 expression in the placenta of endotoxin-
treated near term pregnant rats has recently been indicated
(11). The data regarding regulation of BCRP expression as
discussed above are summarized in Table II.
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Clinical Significance of BCRP Expression in the Placenta
and Future Direction

The findings that BCRP plays a significant role in
limiting fetal distribution of various drugs (Table I) have
important clinical implications. To limit fetal drug exposure,
drugs that are actively transported by BCRP may be
preferred. On the other hand, if the fetus is the target of
drug therapy, drugs that bypass BCRP in human placenta
may be optimal. Glyburide is an excellent example of drugs
that bypass BCRP-mediated transport by human placenta.
Glyburide has been shown to be safe in pregnancy due to
minimal fetal exposure (105). We and others have demon-
strated that BCRP-mediated placental transport of glyburide
is at least one of the mechanisms by which fetal exposure of
the drug is limited (69,74). Many drugs are routinely used by
pregnant women either intentionally or by misuse; however,
for a majority of these drugs, it is still not known if they are
substrates of BCRP and other efflux transporters. Much more
work is therefore needed in the future to identify substrate
drugs of BCRP and other efflux transporters in the placenta,
and to determine how high their affinity is to these trans-
porters. Placental drug transport has so far been primarily
demonstrated in in vitro transport (placental cell lines or
placenta membrane vesicles) or ex vivo placenta perfusion
studies. The data obtained from such in vitro and ex vivo
studies may not be used to accurately predict what happens in
vivo. Thus, in addition to studies using improved in vitro
models (e.g., MDCK cells stably expressing BCRP for
Transwell transport studies to identify BCRP substrate
drugs), more in vivo transplacental pharmacokinetic studies
of drugs in animal models are needed in future work to obtain
detailed information of fetal drug distribution kinetics during
pregnancy. Such information is extremely valuable for drug
therapy in pregnancy. Drug-drug interactions at the placental
barrier through inhibition of BCRP can occur if a BCRP
substrate drug happens to be co-administered with a BCRP
inhibitor. Such interactions could lead to increased fetal drug

exposure through inhibition of BCRP in the placenta. Thus,
caution should be taken when a substrate and an inhibitor of
BCRP are concomitantly administered to pregnant women.

Another important area related to BCRP-mediated
placental drug transport is the regulation of BCRP during
pregnancy. Recent studies indicate that BCRP expression in
placental cell lines or primary trophoblasts is affected by
pregnancy-related steroid hormones, cytokines, and growth
factors. Such findings have significant clinical relevance. For
example, progesterone may induce BCRP expression in the
placenta and augment the protective role of the transporter
during pregnancy. On the other hand, patients with obstetric
disorders associated with elevated cytokine levels may be at
increased risk to fetal exposure of BCRP substrate drugs due
to down-regulation of BCRP expression in the placenta by
cytokines. Much more work is needed to elucidate the
molecular mechanisms by which BCRP expression is regulat-
ed by pregnancy-related steroids, cytokines, and growth
factors, and to determine if such regulation pathways
contribute to gestational age-dependent BCRP/Bcrp1 expres-
sion in the placenta in vivo. In addition, the physiological role
of BCRP in the placenta and the impact of BCRP SNPs on
fetal drug exposure warrant further investigation.

In summary, significant progress has been made in the
past 5 years with respect to the role of BCRP in placental
drug transport. Understanding the molecular mechanisms of
drug transport across the placental barrier as well as
regulation of transporter expression in the placenta can help
develop strategies to control fetal drug exposure and optimize
drug therapy during pregnancy.
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